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ABSTRACT
Given an image and a natural language question, Visual Question
Answering (VQA) aims at answering the textual question correctly.
Most VQA approaches in literature targets at finding answers to the
questions solely based on analyzing the given images and questions
alone. Other works that try to incorporate external knowledge into
VQA adopt a query-based search on knowledge graphs to obtain
the answer. However, these works suffer from the following prob-
lem: the model training process heavily relies on the ground-truth
knowledge facts which serve as supervised information — missing
these ground-truth knowledge facts during training will lead to
failures in producing the correct answers. To solve the challenging
issue, we propose a Knowledge Graph Augmented (KG-Aug) model
which conducts context-aware knowledge aggregation on external
knowledge graphs, requiring no ground-truth knowledge facts for
extra supervision. The proposed KG-Aug model is capable of re-
trieving context-aware knowledge subgraphs given visual images
and textual questions, and learning to aggregate the useful image-
and question-dependent knowledge which is then utilized to boost
the accuracy in answering visual questions. We carry out extensive
experiments to validate the effectiveness of our proposed KG-Aug
models against several baseline approaches on various datasets.

CCS CONCEPTS
•Computingmethodologies→Computer vision tasks;Knowl-
edge representation and reasoning; • Information systems→Ques-
tion answering.
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Knowledge-Required VQA

Q :  What nutrients are rich in this fruit ?

A  :  Vitamin C.

Conventional VQA

Q :  What fruit is this ?

A  :  Orange.

External Knowledge:

As with other citrus fruits, orange pulp is an 

excellent source of vitamin C. (Wikipedia)

Figure 1: Examples showing the differences between conven-
tional VQA and external knowledge-required VQA.

1 INTRODUCTION
With the rapid development of machine learning and its applica-
tions in computer vision, there is an increasing trend in the research
community towards a better understanding of visual contents in
order to achieve more general machine intelligence. As a well-
documented cross-modal task, Visual Question Answering (VQA)
provides a great opportunity for examining the comprehensive un-
derstanding of visual-language information, which has attracted a
lot of attention from both academia and industry.

On the one hand, substantial efforts have been devoted to han-
dling conventional VQA tasks that rely on low-level visual percep-
tions over the visual contents of given images. These tasks include
verifying the existence of visual objects, detecting their locations
in the images and recognizing their attributes, etc. Existing ap-
proaches on conventional VQA directly combine features of visual
images and textual questions together using either attention mech-
anism [1, 15] or multimodal fusion techniques [3, 6, 12], requiring
information only from the questions and images.

On the other hand, it is necessary even for a human to utilize
external knowledge that cannot be directly inferred from the given
visual images and textual questions to answer the questions ac-
curately. As such, the abilities of capturing information from vi-
sual images and textual questions as well as learning to retrieve
and utilize knowledge from external sources are indeed crucial
for a VQA algorithm. Existing methods on external knowledge-
required VQA either perform explicit queries on large-scale knowl-
edge graphs (KG) [27] or retrieve the ground-truth knowledge facts
(i.e., subject-relation-object triplets) from a close-domain knowledge
base [17, 18, 26] to obtain the necessary knowledge, assuming that
the querying results returned from the knowledge graph must con-
tain the answers to the questions. Figure 1 gives an example of
presenting the differences between conventional VQA and external
knowledge-required VQA.
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However, both of these two categories of approaches suffer from
difficulties when bridging the given visual images and textual ques-
tions with the necessary external knowledge:
• The conventional VQA approaches lack the mechanism for
incorporating external knowledge.
• The external knowledge-required VQA approaches require
the ground-truth facts extracted from knowledge graphs
as extra supervised information and will fail to obtain the
correct answers when there are no available ground-truth
facts (this could happen frequently) to supervise the model
training or the referred questions do not need any external
knowledge.

To tackle these difficulties, we propose a Knowledge Graph Aug-
mented (KG-Aug) model which learns to conduct context-aware
external knowledge aggregation on external knowledge graphs,
requiring no ground-truth knowledge facts for extra supervision.
Given the visual image and textual question, the proposed KG-Aug
module first extracts KG entities/concepts that appear in the vi-
sual image or textual question, and construct a context-relevant
knowledge subgraph with these extracted entities as anchor points.
The anchor entities in subgraphs will then be encoded into context-
aware vector forms, aggregating knowledge from their neighbor
entities. To smoothly incorporate the aggregated knowledge into
VQA approaches, we augment the feature representations of vi-
sual objects and textual questions with the vectorized knowledge
representation through a context-aware deep fusion mechanism.
Furthermore, we would like to point out that our proposed KG-Aug
model can be combined with a wide range of VQA approaches
which predict the answers by utilizing the feature representations
of visual objects and textual words to boost their performances. To
summarize, our work makes the following contributions:
• We boost VQA by proposing a Knowledge Graph Augmented
(KG-Aug) model which overcomes the weaknesses of ex-
isting VQA approaches through performing context-aware
knowledge aggregation on external knowledge graphs.
• We smoothly incorporate the aggregated external knowl-
edge from large-scale knowledge graphs into VQA through
a context-aware deep fusion mechanism that requires no
ground-truth facts as supervised information.
• Our proposed model is able to boost the accuracy of various
VQA approaches that utilize the feature representations of
visual objects and textual words to predict the answer.
• We conduct extensive experiments to provide promising
results demonstrating the effectiveness of the proposed KG-
Aug model against several state-of-the-art approaches on
various datasets.

2 RELATEDWORK
Answering conventional visual questions. We refer to the con-
ventional visual questions as the questions that are answerable
merely from visual contents. For the conventional visual questions,
the widely adopted solution is jointly embedding the visual and
question features into a common space using advanced attention
mechanism [1, 15] or multimodal fusion techniques [3, 6, 12], then
feeding them into a classifier over candidate answers. In recent
years, this type of method has dominated the VQA open challenge

and witnessed an impressive accuracy boosts (over 75% accuracy
in VQA2.0 benchmark dataset [9] today).

Encoding unstructured text as external knowledge. Several
previous works [7, 16, 28] make use of unstructured text corpus
(e.g., Wikipedia text, natural language sentences) as the source of
external knowledge. In these methods, external text information is
usually encoded (using techniques such as Doc2Vec, Recurrent Neu-
ral Networks, BERT etc.) into feature vectors to serve as external
knowledge. The difficulty lies in the fact that unstructured text usu-
ally contains much noisy information and it is usually beyond these
models’ capabilities to jointly learn knowledge from the external
text corpus and leverage the knowledge to answer questions.

Explicit reasoning on knowledge graphs. Compared with un-
structured text, large-scale knowledge graphs provide clear and
structured information, which covers knowledge ranging from
commonsense to topic-specific and even expert knowledge in the
form of graphs. Substantial efforts have been devoted to building
large-scale knowledge graphs [2, 22, 25] in recent years. A major
challenge here is the underlying heterogeneity between symbolic
knowledge graphs and continuous visual signals. Several early
works [27] choose to unify them together in the symbolic space.
These methods describe visual information with symbols (e.g., vi-
sual concepts) and link them to relevant parts of knowledge graphs,
in order to conduct explicit reasoning along the graph edges. How-
ever, these methods largely depend on the pre-defined templates
for reasoning and fail to preserve rich visual information.

Fact retrieval from knowledge bases. Different from previous
methods, several works [17, 18, 26] formulate this problem as a
retrieval task that localizes the most relevant facts (i.e., subject-
relation-object triplets) from the given knowledge base, where a
learnable score function is usually applied to model the relevance
between the question-image pairs and candidate facts. The final
answer is selected from the entities that appear in the retrieved
facts. These retrieval-based methods exhibit superior robustness
and versatility compared with the explicit reasoning methods. How-
ever, these methods largely depend on ground-truth knowledge
facts which serve as extra supervised information and may fail
when there are no available ground-truth knowledge facts or the
referred questions do not need any external knowledge.

Recently, there are also relatedworks that expoit retrieved knowl-
edge facts throught memory networks [14, 20] or graph neural net-
works [21]. In contrast, our work performs knowledge aggregation
based on KG entities and can be smoothly intergrated with the
conventional VQA models to boost their performance.

3 VQAWITH CONTEXT-AWARE
KNOWLEDGE AGGREGATION

In this section, we elaborate on the details of our proposed Knowl-
edge Graph Augmented (KG-Aug) model that learns to conduct
context-aware external knowledge aggregation and smoothly in-
corporate the aggregated knowledge into VQA models through a
context-aware deep fusion mechanism to boost their performance.
Figure 2 gives an overview of our model based on a visualized
example.
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Q: What tooth is 

named after this 

type of animal ?

-  { tooth, animal, ... }

-  { dog, ... } 

A:  Canine

External KG

Context Entities from Q and V

Answer Entities

Other Entities

Multimodal Fusion Baseline

what tooth is animalnamed

Context Entities 

Knowledge Aggregation
Answer Entities  

Knowledge Aggregation

Question Words

Visual Objects 

cla
ssifie

r

Context Entities

Knowledge Subgraph

teeth

tooth

FormOf

incisor

IsA canine

RelatedTo

RelatedTo

RelatedTo

RelatedTo

IsA

animal

IsA dog

Synonym

RelatedTo

Synonym

RelatedTo

Answer Entities 

Knowledge Subgraph

External KG

Interactions between Entities

Figure 2: Overview of our proposed KG-Augmodel. Given a pair of image and question, ourmodel first retrieves context-aware
knowledge subgraph from external large-scale KGs, then conducts a context-aware knowledge aggregation on the subgraphs
to embed the knowledge into several anchor entities. By jointly modeling the context entities and candidate answer entities,
we encapsulate external knowledge into three supplementary features, which are then smoothly incorporated into a fusion-
based VQA model to boost its performance.

Technically, augmenting conventional VQAmodels with external
large-scale knowledge graphs is non-trivial. The difficulties arise
from the three aspects:

(1) There is a discrepancy between the overwhelming amount
of available external knowledge and the restricted question-
image context information. We close this discrepancy by
retrieving a context-aware knowledge subgraph in Sec. 3.1.

(2) According to visual and textual context, it is challenging to
learn how to aggregate useful information from knowledge
graphs. We leverage the graph convolution techniques to
aggregate knowledge into several anchor entities in Sec. 3.2.

(3) Another challenge lies in that, how to smoothly fuse aggre-
gated knowledge into VQA systems, so that the system can
perform well on various questions. We describe the fusion
schemes in Sec. 3.3.

3.1 Knowledge Subgraph Retrieval
It is a preliminary preparation to retrieve an appropriate amount of
knowledge from large-scale knowledge graphs (KGs) and generate a
context-aware knowledge subgraph. In this work, we exploit external
knowledge from two large-scale knowledge graphs: 1) Concept-
Net [22] that contains commonsense relationships between daily
words and phrases that people use; and 2) Wikidata [25] that pro-
vides extensive factual knowledge about our world.

Specific to a question-image context, an ideal retrieval procedure
would retrieve potentially useful information in this context and
ignore the irrelevant ones, which is important to reduce the compu-
tational costs and prevent data noises from misleading the model.
To this end, we adopt a two-step procedure to retrieve a knowledge
subgraph: (1) We associate key entities appearing in the context

(image and question, etc.) to the large-scale KGs and denote them
as anchor entities; (2) We build a context-aware knowledge subgraph
by exploiting the anchor entities and their neighborhoods in the
large-scale KGs.

In detail, we collect two types of anchor entities from the context,
including textual and visual entities. The textual entities are KG
entities associated with key phrases of the question, where we uti-
lize the Stanford NLP Dependency Parser [4] and Stanford Named
Entity Recognizer [5] to analyze the question and extract all noun
phrases, verb-object phrases and named entities as the key phrases.
The visual entities are KG entities associated with visual objects
in the image, where we extract the names of prominent visual ob-
jects with a Faster-RCNN object detector [8] pre-trained on Visual
Genome dataset [13]. These anchor entities establish connections
between the visual-question context and external large-scale KGs
(ConceptNet and Wikidata).

Afterward, we reduce the large-scale KGs into a context-aware
subgraph to preserve the most useful candidate knowledge and dis-
card irrelevant ones. Taking the anchor entities as starting points in
external KGs, we perform an expansion from the anchor entities to
their first-order neighbors and preserve the neighborhood entities
and edges which finally constitute the subgraph.

In addition to the local knowledge subgraph for each question-
image sample, we also build a global knowledge subgraph for all
candidate answers, whose anchor entities are all possible answers
(maybe thousands). The motivation of building a global answer
knowledge subgraph is to model answer labels as answer entities,
in a similar manner as we model visual entities and textual entities.
It enables us to bridge questions, images and candidate answers
together in a common knowledge-based semantic space.
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Q: What was the occasion 

this was made for ?

A: Birthday.

Anchor Entities: 

{occasion},  {candle, cake, plate, ...}

birthday

candle

RelatedTo

occasion

RelatedTo

cake

RelatedTo

UsedFor

bananas

yellow

HasProperty

color

IsA RelatedTo

ripe

green

HasProperty

Antonym

banana

HasProperty fruit

RelatedTo

lemon

RelatedTo

RelatedTo

Q: What’s the standard ripe color 

for objects in the picture ?

A: Yellow.

Anchor Entities: 

 {ripe, color},  {banana, fruit, hand, ...}

Figure 3: Two real examples in our experimental datasets. We visualize the expected knowledge subgraphs that are potentially
useful for answering these visual questions.

In the end, the subgraphs act as the context-aware external
knowledge to be exploited and incorporated in VQA.

3.2 Aggregating Knowledge into Anchor
Entities

Given the knowledge subgraph we have built, it remains chal-
lenging to represent the graph in accordance with the images
and questions so that they are computable in a unified and scal-
able system. Generally, the most effective conventional VQA ap-
proaches [1, 10, 24] are built upon hidden representations of images
and questions, which motivates us to embed knowledge graph into
implicit representations. Inspired by recent works on graph neural
networks [30] and knowledge-based question answering [29], we
utilize a particular type of graph convolution network to aggre-
gate graph knowledge into anchor entities according to a specific
contextual query.

Contextual Query Generation. We consider the input question
as a contextual query that indicates what external knowledge might
be useful. For a question q withM words, we first embed each word
into GloVe vectors [19], then feed them sequentially into a multi-
layer LSTM to get a sequence of hidden states {hqm }m=1, · · · ,M . We
take the final LSTM hidden states hq as the contextual query vector.

Entity Neighborhood Scoring. Each entity e is linked to neigh-
boring entities ei through relations ri which constitute a neigh-
borhood Ne for entity e . The triplet (e, ri , ei ) represents a piece
of knowledge, and can be of different importance according to
different contextual queries.

In order to model the importance of neighboring relations and
entities (ri , ei ) for an anchor entity e under a contextual query
vector hq , we take two aspects into consideration: (1) similarity
between the query vector and relation and (2) whether the neighbor-
ing entity is also an anchor entity. Intuitively, an edge connecting
two anchor entities should be more relevant than other edges for
answering questions.

The importance score for neighboring relations and entities
(ri , ei ) is computed as follows:

s(ri ,ei ) ∝ exp
(
I [ei ∈ E0] + r⃗ i · hq

)
, (1)

where I is a binary indicator, E0 is the set of anchor entities and r⃗ i
is a trainable embedding vector of ri .

Aggregating Knowledge from Neighbors. At this stage, we ag-
gregate knowledge from neighbors to update the embedding of
anchor entities. Starting with a collection of initial entity embed-
ding {e⃗ (0) }, this updating operation can be done iteratively for up
to T rounds.

At round t , we model the neighboring knowledge by feeding the
neighboring entity embedding e⃗

(t−1)
i and relation embedding r⃗ i

through a non-linear fully-connected layer. Then, the neighboring
knowledge is weighted by their importance score and aggregated
into a neighboring knowledge vector e⃗ (t )

N
as follows:

e⃗
(t )
N
=

∑
(ei ,ri )∈Ne

s(ri ,ei )tanh
(
W1 [⃗r i ; e⃗

(t−1)
i ]

)
. (2)

After that, the aggregated knowledge is propagated to anchor
entities through a gating mechanism, and the embedding of anchor
entities can be updated as follows:

γ
(t )
e = σ

(
W2 [⃗e

(t−1) ; e⃗ (t )
N
]
)
, (3)

e⃗
(t )
= (1 − γ (t )e )e⃗

(t−1)
+ γ

(t )
e e⃗

(t )
N
, (4)

where the γ (t )e is a learned trade-off factor indicating how much
neighboring knowledge is propagated into e⃗ (t ) .

After T rounds, the model yields a collection of embedding of
anchor entities {e⃗} ≡ {e⃗ (T )

}.
In summary, we exploit the knowledge subgraph by encoding

the information into embedding of anchor entities, which makes it
more feasible to incorporate the knowledge in the next stage.

3.3 Answer Visual Questions with Knowledge
With the knowledge graph embedding method described in Sec. 3.2
being applied to the two types of knowledge subgraphs extracted
in Sec. 3.1, we obtain two collections of vectorized entities: a collec-
tion of context entities that encode external knowledge for image-
question context, and a collection of answer entities that represent
each corresponding answer as entities with semantic knowledge.

In this section, we turn to the challenge of how to seamlessly
incorporate these anchor entity embeddings into conventional VQA
approaches. Our model adopts the following two measures:
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• Aggregating the entity embeddings into several auxiliary
question features that encapsulate useful external knowl-
edge, which further removes noisy information and reduces
the scale of knowledge involved.
• Matching entities to visual regions to augment visual fea-
tures with semantic knowledge.

By means of manipulating the question and visual features, we
can seamlessly incorporate the embedded knowledge into conven-
tional VQA pipelines.
Generating Auxiliary Question Features. We distill the embed-
ded knowledge through three auxiliary features {e⃗ (ctx) , u⃗, e⃗ (ans) },
which respectively correspond to: 1) the question-image context, 2)
the context-answer compatibility and 3) the targeted answer that
is the most compatible with the context.

We denote C as the set of context entities and A as the set of
candidate answer entities. Given a context query vector hq as we
used in Sec. 3.2, we measure the similarity between hq and each
context entities ei ∈ C, then combine them into a contextual
entity embedding e⃗ (ctx) as follows:

e⃗
(ctx)
=
∑
ei ∈C

α i e⃗i , α i ∝ exp
(
hq · e⃗i

)
. (5)

The formula α i ∝ exp (∗) means that we use a softmax operation
to obtain the weights α i , where the sum of α i equals to 1.

Then we take the answer entities into consideration. The merits
of modeling answer labels as answer entities is that, it allows us
to assess the compatibility between the context and the candidate
answers in a common semantic space. For each candidate answer
entity ej ∈ A, we compute its compatibility factor β j with the
context by computing the inner product between the embedding
of itself e⃗ j and the previous contextual entity embedding e⃗ (ctx) :

β j ∝ exp
(
e⃗
(ctx)
· e⃗ j

)
. (6)

Notably, higher compatibility usually indicates there are stronger
connections (e.g., more reliable reasoning paths) between the con-
text and the answer entity in their knowledge subgraph neigh-
borhood. Thus, the above compatibility factors β ∈ R |A | can be
interpreted as the “closeness” between the context and each candi-
date answer in the knowledge graph space.

For ease of use, we further encode the context-answer compat-
ibility factors β ∈ R |A | into a context-answer compatibility
vector u⃗ through a non-linear fully-connected layer as follows:

u⃗ = ReLU (β ·W3) , (7)

where the W3 is a trainable parameteric matrix.
Meanwhile, a targeted answer entity embedding e⃗

(ans) is
thereby calculated according to the compatibility factors as fol-
lows:

e⃗
(ans)

=
∑
ej ∈A

β j e⃗ j . (8)

In the end, we obtain three features {e⃗ (ctx) , u⃗, e⃗ (ans) } that en-
capsulate useful external knowledge as auxiliary information for

answering the questions. Altogether, these auxiliary features cap-
ture underlying reasoning paths in the graph and serve as essential
components to make full use of the aggregated knowledge.
Augmenting Visual Features with Visual Entities. As for the
visual side, we augment the visual features with their corresponding
visual entities.

It should be noted that, we use object-based visual features the
same as the Bottom-up Top-downmodel [1], which employs a Faster-
RCNN [8] object detector as the feature extractor. Therefore, it al-
lows us to link the visual features with semantic names and knowl-
edge graph entities. In our work, we establish the correspondence
by simultaneously extracting the visual features and predicting
their class names.

Suppose an image has K visual features, where the kth feature
vk corresponds to the context entity ek ∈ C, we augment the
visual features by concatenatingvk and e⃗k together, producing the
augmented visual features as:

ṽk =
[
vk ; e⃗k

]
. (9)

To some extent, this concatenation operation adds extra semantic
information to the visual features, making them more expressive
when interacting with questions features.
Incorporating Knowledge into VQA Pipelines. Here we elab-
orate on how to incorporate the obtained knowledge into VQA
pipelines.

In general, conventional VQA approaches adopt a fusion oper-
ation to combine visual features and question features together,
i.e., BaseFusion({vk }k=1, · · · ,K ; {h

q
m }m=1, · · · ,M ). In this work, we re-

placev with augmented visual features ṽ and design two schemes
to augment the three auxiliary features {e⃗ (ctx) , e⃗ (ans) , u⃗} to the ques-
tion.

Scheme 1: Late Augmentation. The auxiliary features are re-
garded as extra question hidden features and concatenated with
{h

q
m } as:

f⃗ = BaseFusion( {ṽk }; {e⃗
(ctx)

, e⃗
(ans)

, u⃗ } ∪ {h
q
m }). (10)

Scheme 2: Early Augmentation. The auxiliary features are
regarded as extra question words and fed into a LSTM to obtain
M + 3 question hidden states {h̃qm }m=1, · · · ,M+3 as follows:

{h̃
q
m } = LSTM( {e⃗

(ctx)
, e⃗

(ans)
, u⃗ } ∪ {wm }) (11)

f⃗ = BaseFusion( {ṽk }; {h̃
q
m }), (12)

where theM is the question length, {wm } is the sequence of ques-
tion word embeddings.

In the end, the produced fusion vector f⃗ is fed into a classifier
(usually implemented as a multi-layer perceptron) to get the final
answer, i.e., â = Classifier( f⃗ ).

We close this section by pointing out that, our KG-Aug model is
a practical and generic framework to incorporate large-scale exter-
nal knowledge graphs into VQA pipelines. It learns to aggregate
context-aware external knowledge without extra supervision ex-
cept for the answer and can be applied to a wide range of VQA
baselines.
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Table 1: Results on the OK-VQA dataset. We mark the results reported in previous papers with star symbols(*). The other
results are calculated by averaging nine repeated experiments with casually selected random seeds to reduce the experiment
variance. We show the results for the overall OK-VQA dataset and for each question category: Vehicles and Transportation
(VT); Brands, Companies and Products (BCP); Objects, Material and Clothing (OMC); Sports and Recreation (SR); Cooking
and Food (CF); Geography, History, Language and Culture (GHLC); People and Everyday Life (PEL); Plants and Animals (PA);
Science and Technology (ST); Weather and Climate (WC); and Other.

Method OKVQA VT BCP OMC SR CF GHLC PEL PA ST WC Other

Q-Only* [16] 14.93 14.64 14.19 11.78 15.94 16.92 11.91 14.02 14.28 19.76 25.74 13.51
MLB-Att [12] 20.40 20.00 16.24 17.86 24.61 22.39 17.67 17.62 20.67 18.49 31.27 17.55
BAN* [11] 25.17 23.79 17.67 22.43 30.58 27.90 25.96 20.33 25.60 20.95 40.16 22.46

BAN (re-run) [11] 25.46 23.65 21.07 22.55 33.64 26.95 21.33 21.07 26.60 19.42 36.12 22.64
ArticleNet* [16] 5.28 4.48 0.93 5.09 5.11 5.69 6.24 3.13 6.95 5.00 9.92 5.33

BAN + ArticleNet* [16] 25.61 24.45 19.88 21.59 30.79 29.12 20.57 21.54 26.42 27.14 38.29 22.16
KG-Aug (ours) 16.11 15.54 12.11 13.94 19.60 16.93 14.61 13.37 16.55 11.48 27.92 14.98

MLB + KG-Aug (ours) 20.89 20.08 16.45 17.71 26.68 22.27 16.78 18.03 21.70 18.60 32.58 17.91
BAN + KG-Aug (ours) 26.71 24.65 21.59 22.42 34.75 28.67 23.97 21.97 27.75 23.28 38.85 24.29

4 EMPIRICAL EXPERIMENTS
We conduct experiments on three VQA datasets: (1) the OK-VQA
(Outside Knowledge VQA) dataset [16], the largest human-written
knowledge-based VQA dataset with more than 14K open-ended
visual questions, which require both the commonsense and factual
open knowledge to answer; (2) the Visual7W-telling dataset [31]
that contains 328K multi-choice visual questions of various types
(What, Where, When, Who, Why and How), where lots of diverse
questions involve external commonsense knowledge; and (3) the
FVQA dataset [26] where each question-answer sample is accompa-
nying a piece of ground-truth fact retrieved from a given knowledge
base.

For the OK-VQA and Visual7W datasets, our Knowledge Graph
Augmented (KG-AUG) model obtains state-of-the-art results. It
generalizes well across different baseline approaches, demonstrat-
ing the effectiveness and universality of our model. For the FVQA
dataset, we experiment without using the given knowledge base
or the provided ground-truth facts, and the model can achieve
consistent improvements over the baselines in this dataset.

We describe the baseline approaches and our model variations in
Sec. 4.1 and analysis their performance on these datasets in Sec. 4.2.
To further gain insights into our method, we carry out extensive
ablation studies and provide visualized results in Sec. 4.3.

4.1 Baselines and Model Variations
In this section, we briefly describe the baseline approaches for com-
parison in this work, including conventional fusion-based models
and knowledge-based ones. Besides, we introduce several model
variations of ours, including a standalone KG-Aug model and several
X+KG-Aug models that augment the baseline approach X with our
KG-Aug model.

MLB-Att. A Multimodal Low-rank Bilinear model [12] with the
attention mechanism. This model builds an attention distribution
for the visual features based on the question using the low-rank
bilinear fusion, which is a classic and widely-used feature fusion
technique.

BAN. The Bilinear Attention Networks [11]. This model consid-
ers the bilinear interactions between each pair of input channels for
visual and language features. It is one of the current state-of-the-art
fusion-based VQA methods.

ArticleNet.Aknowledge-basedmethod that tries to incorporate
external information from Wikipedia articles [16]. It uses a GRU to
encode sentences in the articles and predicts whether each word in
the article is the answer or not.

BAN + ArticleNet. A knowledge-based method that combines
the BAN and the ArticleNet model [16]. The hidden states of Ar-
ticleNet are incorporated into the BAN model through a memory
network [23].

KDMN.Aknowledge-basedmethod [14] that incorporates exter-
nal knowledge facts with dynamic memory networks. It is designed
for the multi-choice VQA tasks.

KG-Aug (ours). The standalone version of our KG-Aug model.
We obtain the answer by feeding the context-answer compatibility
factors β ∈ R |A | (in Sec. 3.3) to a classifier, i.e., â = Classifier(β ).

MLB + KG-Aug (ours) and BAN + KG-Aug (ours). The X +
KG-Aug model takes a fusion-based VQA baseline and augments it
with our proposed KG-Aug model. In our experiments, we take two
representative models (the MLB-Att model and the BAN model) as
the X baselines. Specifically, the BAN+KG-Aug model uses the Late
Augmentation Scheme to incorporate knowledge and the MLB+KG-
Aug model uses the Early Augmentation Scheme, which have been
described in Sec. 3.3.

4.2 Performance Analysis
We conduct extensive experiments to assess the model’s capability
for answering knowledge-required visual questions (the OK-VQA
dataset, Sec. 4.2.1 and the FVQA dataset, Sec. 4.2.3) and general vi-
sual questions with high diversity (the Visual7W dataset, Sec. 4.2.2).
In this section, we report and analyze the experimental results on
these datasets. The results demonstrate that our model exhibits
superior performance and generalizes well under various experi-
mental settings.
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4.2.1 Results on the OK-VQA Dataset. For the open-ended OK-VQA
dataset, we obtain the final answer â by a classification over all pos-
sible answers. We follow the original dataset paper [16] and use the
standard VQA accuracy metric Acc(â) = min{ #humans that said â

3 , 1}
to evaluate the model performance.

As shown in Table 1, we provide the results of several fusion-
based baselinemodels in the top rows, a knowledge-basedArticleNet
baseline in the middle rows, and our models in the bottom rows. In
order to allow meaningful comparisons, we report two BAN model
results: one is the result reported in the previous paper [16] and
the other one is our re-run result via repeated experiments with
random seeds.

In comparison with the BAN baseline, our BAN+KG-Aug model
improves the overall accuracy by 1.25%, achieving the best perfor-
mance among all models. As for theMLB-Att baseline, ourMLB+KG-
Aug model gains 0.5% improvements over it. The consistent per-
formance improvements indicate that our method can success-
fully adapt to different base models and is helpful for answering
knowledge-required visual questions.

Compared with another knowledge-based ArticleNet method,
our standalone model KG-Aug surpasses it with more than 200%
relative performance boosts. Besides, we can measure the separate
contributions of ours and the ArticleNet (i.e., BAN+KG-Aug and
BAN+ArticleNet) to the BAN baseline model. Experiment results
demonstrate that our method is better (1.25% v.s. 0.4%) at incorpo-
rating external knowledge.

Table 2: Results on Visual7W dataset.

Methods Overall What Where When Who Why How

LSTM-Att* [31] 54.3 51.5 57.0 75.0 59.5 55.5 49.8
MCB + Att* [6] 62.2 60.3 70.4 79.5 69.2 58.2 51.1
KDMN* [14] 66.0 64.6 73.1 81.3 73.9 64.1 53.3
BAN [11] 71.1 71.3 76.7 82.6 78.1 64.4 59.3

KG-Aug (ours) 67.6 60.7 69.2 78.7 71.4 61.4 84.9
BAN + KG-Aug (ours) 72.0 72.0 77.8 83.4 78.9 66.9 59.6

4.2.2 Results on the Visual7W Dataset. In contrast with the pre-
vious open-ended dataset, the Visual7W dataset is a VQA dataset
in the multi-choice setting with four candidate answers for each
question. We formulate this multi-choice problem as a binary classi-
fication problem and predict a probability P (ci ) for the ith candidate
answer, then make the final choice by selecting the one with high-
est probability â = argmaxi ∈{1,2,3,4}P (ci ). The evaluation metric is
the accuracy of making the correct choices. There are some minor
modifications to our models for adapting to this dataset, such as
concatenating the multi-choice answers with the question as input,
etc.

In Table 2, we list several baselines for comparison. As expected,
our BAN+KG-Aug model gains noticeable performance improve-
ments (0.9%) compared to the BAN baseline, indicating that our
model adapts well on this dataset. Our model obtains different
boosts for different question categories, where the most significant
improvement is for theWhy questions (2.5%), due to the fact that
Why questions usually require more commonsense knowledge to
answer.

Table 3: Results on the FVQA dataset.

Methods Accuracy

LSTM-Question+Image* [26] 22.97
Hie-Question+Image* [15] 33.70

BAN [11] 35.69
KG-Aug (ours) 31.96

BAN + KG-Aug (ours) 38.58

4.2.3 Results on the FVQA Dataset. The FVQA dataset is an open-
ended VQA dataset similar to the OK-VQA. Besides, it also provides
an accompanying knowledge base of facts and ground-truth fact
annotation for each question-answer pair. We experiment without
using the given knowledge base or the provided ground-truth facts
in FVQA dataset, aiming to leverage open knowledge to boost the
performance, only using the answer as training signals. Thus we
did not compare with these fact retrieval based methods [17, 18].
We evaluate the model performance by using the standard accu-
racy metric and averaging among the five official train/val splits.
As shown in Table 3, our BAN+KG-Aug model gains significant
performance improvements (2.89%) compared to the BAN baseline,
Besides, even the standalone KG-Aug model that only exploits the
context-answer compatibility factors achieves competitive results.
These experimental results indicate the effectiveness of our method
for incorporating external knowledge.

4.3 Ablation Studies and Visualizations
To get further insights into our model, we conduct several ablation
studies on the OK-VQA dataset to investigate the effects of the
model components and the effectiveness of the knowledge sources
(Table 4). In Fig. 4, we visualize examples to provide more insights.

Table 4: Ablation results on the OK-VQA dataset.

Ablation Accuracy Acc.Drops

- Full model (BAN + KG-Aug) 26.71 0.0
a) - w/o question augmentation

- w/o {u⃗ } 26.50 -0.21
- w/o {e⃗ (ans)

} 26.43 -0.28
- w/o {u⃗, e⃗ (ans)

} 25.52 -1.19
- w/o {e⃗ (ctx)

, u⃗, e⃗
(ans)
} 25.92 -0.79

- w/o visual augmentation 26.53 -0.18
- w/o knowledge aggregation 24.94 -1.77

b) - w/o knowledge sources
- w/o ConceptNet 26.33 -0.38
- w/o Wikidata 26.49 -0.22
- with noisy knowledge 25.95 -0.76

- Base model (BAN) 25.46 -1.25

Ablation Studies # 1: Effects of Model Components. We
measure the effects of each part in our KG-Aug model by evaluating
the model accuracy when the part gets removed.

As shown in Table 4(a), we observe a significant accuracy de-
crease when removing the {u⃗, e⃗ (ans) } features, especially when
they both get removed. We think the reason why the {u⃗, e⃗ (ans) }
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OK-VQA Examples Visual7W Examples

Q: Name the place where these persons skating in this picture ?

A: skatepark.

Top GT-Answer knowledge:

(skatepark, RelatedTo, 

skateboard)*

(skatepark, IsA, park)*

(skatepark, DerivedFrom, skate)*

Top Context Entities:  skateboard* (0.22), park* (0.17), ...

Top Context Knowledge:

(skateboard, DerivedFrom, 

board)

(skateboard, DerivedFrom, 

skate)*

Q: How cold is it ? A: snowy.

Top GT-Answer Knowledge:

(snowy, RelatedTo, slush)

(sky, HasProperty, snowy)

(snowy, DereivedFrom, snow)*

Top Context Entities:  snow* (0.72), cold (0.09) ..

Q: What activity is the woman doing ?

A: cut.

Top Context Entities:  scissors* (0.83), activity(0.04),...

Top Context Knowledge:

(scissors, UsedFor, cut)*

(scissors, CapableOf, 

tear_paper)

A: A birthday.

B: Christmas.

C: Halloween.

D: New year’s.

P(ours)   P(base)

   0.94       0.15

   0.35       0.87

   0.00       0.00

   0.00       0.01

Q: What are they celebrating ?

(1)

(2)

(3) (4)

(5)

A: To stop the cars.

B: The opposing light is green.

C: Cars need to yield.

D: A warning that pedestrians are crossing.

P(ours)   P(base)

   0.52       0.05

   0.09       0.01

   0.00       0.00

   0.12       0.07

Q: Why the traffic light is red ?

Figure 4: Visualized examples on the OK-VQA and Visual7W datasets. On the OK-VQA dataset, we provide the top-weighted
context entities and the top-weighted knowledge that is aggregated into the ground-truth answer entity (Top GT-Answer knowl-
edge) or the context entities (Top Context Knowledge). We mark the potentially useful entity connections with star symbols. As
for the Visual7W dataset, we show the results of the BAN+KG-Aug model and compare with the BAN baseline model. Results
show that external knowledge (e.g., cake-RelatedTo-birthday in example (4)) can help inferring the correct answer.

features contribute most is that they explicitly establish connec-
tions (graph reasoning paths) between question-image context and
all candidate answers (i.e., β ∈ R |A |), which inherently encodes
the external graph knowledge. Interestingly, using e⃗ (ctx) alone (i.e.,
“w/o {u⃗, e⃗ (ans) }”) works even worse than doing nothing about ques-
tion augmentation (1.19% > 0.91%). This fact further implies the
difficulties of incorporating external knowledge and necessities of
modeling the answer entities in a common knowledge space. An-
other observation is that the performance drops significantly when
we disable the knowledge aggregation mechanism (we disable it by
setting the aggregating gate γ (t )e to zero).

Ablation Studies # 2: Effectiveness of Knowledge Sources.
We incorporate external knowledge from two knowledge sources
(ConceptNet and Wikidata) in our proposed method. Here we in-
vestigate the effectiveness of each knowledge source and the im-
portance of using proper knowledge.

As shown in Table 4(b), removing the knowledge from Con-
ceptnet leads to a performance loss of 0.38%, while for Wikidata
knowledge, it is 0.22%. The results demonstrate that both the com-
monsense knowledge in ConceptNet and the factual knowledge
in Wikidata are helpful for answering questions in the OK-VQA
dataset.

Additionally, in order to validate the importance of using proper
knowledge, we fabricate a “noisy knowledge source” by randomly
permuting entities and relations in the original external knowl-
edge graphs, where the connections between entities are noisy and
unreliable. As expected, the noisy knowledge harms the model per-
formance with an accuracy loss of 0.76%. Interestingly, this effect
is similar to that of removing the question augmentation (i.e. “w/o

{e⃗
(ctx)
, u⃗, e⃗

(ans)
}”), implying that the unreliable knowledge prevent

themodel from exploiting the entities connections that are normally
embedded in the auxiliary question features.

Visualizations.We visualize several examples in Fig. 4 to pro-
vide more insights. After inspecting lots of successful and failure
cases on the OK-VQA dataset, we find that the model can leverage
the connections between the context entities and candidate an-
swer entities, which are built upon the external knowledge graphs.
The context entities can be connected to the answer through var-
ious types of knowledge, such as context entities knowledge (e.g.,
Fig. 4 (3)) or answer entities knowledge (e.g., Fig. 4 (2)) or both (e.g.,
Fig. 4 (1)).

5 CONCLUSIONS
In this work, we propose the Knowledge Graph Augmented (KG-
Aug) model, a practical and generic framework for incorporating
large-scale external knowledge graphs into the VQA task. Our KG-
Aug model learns to conduct context-aware knowledge aggregation
on a retrieved knowledge subgraph and smoothly incorporates the
aggregated knowledge into conventional VQA models to boost
their performance. We validate the effectiveness of our model on
various datasets, showing that the KG-Aug model exhibits supe-
rior performance and generalizes well under various experimental
settings.
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